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ABSTRACT

3D extraction from video gives a representation adapted to low
bitrate coding and provides enhanced functionalities suchas 3D
cues for augmented reality and interactive navigation in photo-
realistic environments. But for degenerated motions of camera,
like pure rotation, 3D information can not be retrieved. In this
article we propose an original representation based on a hybrid
2D/3D models stream. The idea of this approach is to provide a
modelling for all sequences including those with rotations. The
sequence is divided into portions and for each one the motionof
the camera is identi�ed. Depending on the type of motion a 3D
model, a cylindrical mosaic or a spherical mosaic is extracted.
They are constructed in order to be suitable for an homogeneous
visualization process. Results are shown for synthetic andreal
video sequences.

1. INTRODUCTION

1.1. Context

3D model based video coding consists of the representation of a
video with one or several 3D models of the captured scene. By
reprojecting these 3D models one obtains a virtual sequencesim-
ilar to the original but with enhanced functionalities suchas aug-
mented reality, free view point generation or lighting changes.
Furthermore, 3D model based representations are more compact
than image based-ones.
3D model extraction from images is based on structure-from-
motion and thus requires different view points of the same scene.
In particular, a camera undergoing a pure rotation does not allow
the recovery of 3D information as there is no intersection be-
tween different lines of view (see Figure 1). Shape from motion
thus requires that camera motion is assumed not to be a pure ro-
tation. On the other hand mosaics are very well suited to repre-
sent a video obtained with rotational motion. So here we propose
an original 2D/3D hybrid method based on both 3D models and
mosaics. The aim is to deal with all types of video representing
a �xed scene including those acquired with a camera undergoing
pure rotational motion.

1.2. Previous work

1.2.1. 3D Modelling

Retrieving 3D information from videos has long been studiedin
the �eld of computer vision [1, 2]. However it usually assumes
a video sequence speci�cally acquired for enabling 3D recon-
struction, or it requires a human interaction in the reconstruction
or matching steps [3, 4].

?

Figure 1: Camera translation is required for structure-from-
motion: in case of pure rotation, viewlines are superimposed

In 3D model-based coding, acquisition conditions are not con-
strained but assumptions are made on the scene contents: an a
priori known 3D model of the scene contents is available whose
pose, texture (and possibly non rigid deformation) are estimated
from the video. This approach is very ef�cient for coding video
with speci�c contents such as visiophony [5].
As our goal is to propose a 3D representation for any video se-
quence, we thus do not want to make assumptions on camera pa-
rameters, scene contents or video length. In this context Galpin
proposed a method based on a 3D model stream [6] instead of
aiming at a unique realistic model of the scene. Each model is
valid for a portion of the original sequence called a GOP (Group
of Pictures). These GOPs are delimited with key images that are
automatically chosen. For each GOP a 3D model is automati-
cally estimated and inter-GOP coherence is allowed by a sliding
adjustment [7].

1.2.2. Mosaics

Mosaics can be obtained by homographic, cylindrical or spheri-
cal projection [8, 9, 10].
Homographic mosaics are well adapted to reconstruct planarsce-
nes and can also be used in pure rotational cases. However,
cylindrical and spherical mosaics are better adapted to pure rota-
tional cases: they allow large rotations, and avoid the distortion
of pictures that are far from the reference image.



1.2.3. Model selection

Model selection in a general case has been studied by Kanatani
[11, 12] based on a combined residual/complexity criterionap-
proach. It has been used for motion model selection in video
sequences by Berger [13] and Torr [14]. Selecting the motion
model based on the model complexity is not suitable for our ap-
proach as we want to favor 3D modelling and use 2D modelling
only when it fails. We thus use criteria based on residuals only
and a selection algorithm favoring 3D modelling.

2. OVERVIEW OF OUR APPROACH

This section presents an overview of our hybrid 2D/3D repre-
sentation for video, which is based on the scheme proposed by
Galpin [7] and Morillon [15].

2.1. General principle

Our approach is based on an analysis-synthesis scheme. In the
analysis step, the video is partitioned intogroups of pictures
(GOPs) (�gure 2) and for each GOP, a textured 3D model (either
general, cylindrical, or spherical) is computed. Each model is as-
sociated with a set of camera positions, one for each video frame
in the GOP. The stream of 3D models is encoded and transmit-
ted. At the receiver, synthesis is performed on the �ow to rebuild
the original video sequence (�gure 3): each 3D model is textured
and rendered using the transmitted camera positions, whichpro-
vides the reconstructed frames for the current GOP.

2.2. Important notions

� The GOPs are delineated at their extremities by two par-
ticular images : thekey-frames.

� Two consecutive GOPsG1 andG2 share respectively their
last and �rst key-frames (see �gure 2).

� A 3D mesh is associated to each GOP and its texture is
either the �rst key-frame in the general case, or a mosaic
regrouping all the GOP's frames in case of pure rotational
motion.

� 2D GOPs refer to GOPs where camera motion is a pure
rotation. As in this case 3D information can not be re-
trieved, these video parts are modelled as 2D mosaics.
Mosaics are warped onto a cylindrical or spherical 3D
mesh for allowing an homogeneous rendering procedure,
but they essentially are 2D models.

2.3. Hypothesis

We remind here the main hypothesis on which is based our method.

� The scene is supposed to be static, or at least motion-
segmented.

� It has been shot by a moving monocular camera.

� The camera motion is not constrained.

� Neither the intrinsic parameters nor the extrinsic parame-
ters are known.

� The focal length is �xed (no zoom).

� No hypothesis is made on the scene contents except that
there are no, or only few, specular surfaces.

2.4. Algorithm steps

We now describe each step in the proposed algorithm, illustrated
in �gure 4.

Motion Estimation:The �rst step is to estimate the motion �eld
throughout the GOP, i.e. the displacement vectors for each pixel
between the �rst and the last frames. This is carried out thanks to
a 2D deformable mesh [16, 17, 18]. The motion estimation be-
tween two framesI t andI t +1 is performed by netting regularly
I t with a 2D six-valency mesh, and by searching for each node
of this mesh the motion that minimizes the quadratic error be-
tween a frame and the following, which is motion-compensated.
The motion~u of each pixel inside a triangle is given by the bal-
anced sum of the motion of each vertices for this triangle. Mo-
tion throughout a given GOP is �nally computed by accumulat-
ing the vector �elds of the successive images.

Extraction and tracking of interest points:Feature points extrac-
tion is performed in the �rst frame using a Harris corner detector
[19] on the set of 2D mesh nodes. Interest points tracking is then
deduced from the motion estimation computed earlier.

Camera pose estimation:The camera motion estimation is per-
formed using epipolar geometry. Since we need the intrinsic
parameters of the camera to perform such a task, and since self-
calibration methods are still unstable and computationally ex-
pensive, we prefered to use rough values for the intrinsic param-
eters.

Parallel mosaic creation:Since we still do not know which type
of model will better �t the input images, a mosaic is computed
in parallel to motion estimation. Image registration is carried
out thanks to the 2D mesh motion estimator. It will be aban-
doned later if a classical 3D model is better suited.

Depth map estimation:The depth map is deduced from the dis-
parity map (i.e. the motion �eld) by classical triangulation, using
estimated camera parameters.

3D reconstruction:When the next key-frame is selected the cor-
responding model is built. If a 3D GOP can be constructed, we
apply a regular triangular mesh on the depth map and displace
the nodes to the corresponding depth. Otherwise a 2D mosaic
model is built.

Final reconstructed sequence visualization:The �nal recons-
tructed sequence can be viewed by a dedicated software, which
takes as input data the different models with their texturesand
associated camera pose. In addition to viewing some speci�c
post treatments are available, such as global illuminationmod-
i�cation, changes in the camera path for virtual navigationor
creation of a stereo sequence for immersive visualization.

3. KEY FRAMES AUTOMATIC SELECTION

The size of the GOPs is not �xed. It is determined by the video
data. We therefore need to select key-frames in the sequencethat
will delineate those GOPs. Key-frames choice is very important
because it will determine the viability of the �nal reconstruction.
This is done in an fully automatic way, with regard to different
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Figure 2: General principle of a 3D models �ow representation.
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Figure 3: Synthesis step: 3D models, texture images and camera positions are used to reconstruct the original frames.

criteria computed on the basis of the tracked interest points anal-
ysis. Moreover we wanted our key-frames selection to �t the
following constraints :

� It must provide the GOP type among 3D, panoramic and
spherical.

� It has to favor 3D type GOPs and use 2D GOPs only if
3D is not possible.

� In case of a 3D type GOP, a tri-dimensional reconstruc-
tion must be possible.

� It also has to maximize the GOPs size in order to avoid re-
dundancy, and ensure that the reconstruction will be made
under wide enough baseline conditions.

3.1. Selection criteria

The selection criteria are inspired by the ones de�ned by Galpin
[18] and Morillon [15] in the case of 3D and panoramic GOPs.
We have adapted the criteria to the spherical case and completed
the algorithm to deal with any sequence of 3D, cylindrical and
spherical type of motion. The criteria are estimated for each
current frameI t + p and they determine whether or not the current
frame is chosen as the next frameK t +1 which ends the GOP.

3.1.1. Apparent displacementCd

D t;t + p represents the average motion of the points between the
current imageI t + p and the key-frameI t that precedes in the
sequence, and the criterion testingD t;t + p is de�ned as:

Cd , D t;t + p > S d

where D t;t + p = 1
N t + p

N t + pP

i =1
k~u(m i

t;t + p)k
(1)

with N t + p the number of tracked points from the last key-frame
I t until current imageI t + p , ~u the motion vector of pointm i

betweenI t andI t + p , andSd a threshold on the average pixels
motion. Sd has been �xed experimentally to 10 pixels. This
criterion ensures that the estimation of a depth map will be done
under satisfying baseline length.

3.1.2. Common view �eldCp

Cp supervises the percentage of common points betweenI t and
I t + p , and is expressed as :

Cp ,
N t + p

N t
> S p (2)

with Sp the threshold on the remaining points percentage. This
criterion ensures that two key-frames share a suf�cient common
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Figure 4: Algorithmic chain

information to build a valid model of the portion of sequence
they delineate. It has been �xed to 70%.

3.1.3. Epipolar residual

Ce is de�ned as:

Ce , 1
N t + p

N t + pP

i =1
(D i

t;t + p + D i
t + p;t ) < S e

where D i
t;t + p = d2( ~m i

t ; Ft;t + p : ~m i
t + p)

and Ft + p;t = F t
t;t + p

(3)

with ~m t an interest point in the imageI t expressed in homoge-
neous coordinates,~m t + p its correspondent inI t + p , Ft;t + p the
estimated fundamental matrix andSe a threshold on the match-
ing precision, that is �xed to 0.5 pixels. This criterion permits
to check the epipolar residual computed from the fundamental
matrix and matched points between the last key-frame and the
current frame. It therefore ensures that the 3D model will be
re-projected on the following key-frame with a sub-pixel error,
and that the camera motion as well as the fundamental matrix are
consistent with the motion �eld given by the mesh-based dense
estimation.

3.1.4. Rotational motion :Cr

The criterionCr allows to detect rotational motion. It is de�ned
as:

Cr ,
E r

D t;t + p
< S r

The image transform induced by a pure rotation (planar homog-
raphy) which best �ts the interest points motion is estimated.
The mean residual is computed as:

E r =

P N
i =1

p
(x i

1 � x i
2)2 + ( y i

1 � y i
2)2

N
(4)

where(x i
1 ; y i

1) and(x i
2 ; y i

2) are the cartesian coordinates of the
interest pointsm i

1 andm i
2 respectively in the �rst and last image

in the current GOP.Cr involves rotational residual with respect
to mean image displacement. It thus consider relative contribu-
tion of rotational and translational motion in the observedimage
displacement. ThresholdSr is experimentally �xed to0:05 pix-
els. It has to be noticed that whenCr is true (i.e. a rotational
motion has been detected), then the epipolar criterionCe is not
signi�cant.

3.2. Selection algorithm

We present here the key-frame selection algorithm using thepre-
viously de�ned criteria. It is executed for each current frame,
and indicates, if a key-frame is selected, whether it delineates a
2D or a 3D GOP. The current analyzed GOP is by default clas-
si�ed as unknown, and if at timet the 3D scene geometry is
suf�ciently well estimated the GOP is then classi�ed as one of
3D type. It can be labelled as2D only if there are not enough
tracked points in the sequence and if the epipolar criterionhas
never been true. The end of a2D GOP occurs as soon asCr

becomes false. We can see in �gure 5 the precise scheme of this
algorithm.

4. 3D MODEL GENERATION

Once the GOP type is determined the corresponding model is
built. For 2D GOPs, 2D planar models would be suf�cient.
However, in order to get an homogeneous processing at the de-
coder, we also want to represent 2D GOPs as textured 3D meshes
and a set of camera positions, allowing to reconstruct the orig-
inal frames in the GOP. We build a cylinder in case of vertical
oriented rotations, and a geosphere in case of general rotations.
Both have a mosaic associated as texture.

4.1. 3D models

In a general motion context, once a key-frame is selected to ter-
minate a 3D GOP, the corresponding model is built. First, the
disparity map is used in a retro-projection phase to computethe
depth map for each pixel. Note that we want this retro-projection
to be perfect on the �rst image of the GOP. Then a uniform mesh



3Dfeasible =false ;
GOPtype =unknown ;

If Cd Then
If Cp Then

If Ce ^ : Cr Then
3Dfeasible =true ; ContinueGOP;

Else
If 3DfeasibleThen

Finalize3D;
ElseContinueGOP;

Else
If Ce ^ : Cr Then

If GOPtype=2DThen Finalize2D;
ElseFinalize3D;

Else
If 3DfeasibleThen Finalize3D;
If (GOPtype==2D & !Cr Then Finalize2D;
GOPtype=2D; ContinueGOP;

Elseidle

Figure 5: Key-frames selection algorithm
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is applied on the depth map, and each of his nodes is moved to
the corresponding depth.
The use of a uniform mesh instead of an adaptive one is justi�ed
by the fact that in the uniform case we only have to transmit ina
prede�ned way the depths of each node, whereas in the adaptive
case we would have to transmit the entire topology of the model.

4.2. Cylindrical model

In the case of a panoramic motion, the 3D model generated is a
cylinder centered on the camera optical center, and whose radius
is equal to the focal length. The computed panoramic mosaic
is mapped onto the 3D cylinder in such a way that the repro-
jections of the model with the virtual camera will generate the
original frames. This procedure is very simple and can be seen
as a transformation from cartesian to cylindrical coordinates (see
�gure 6): 8

<

:

x0 = fsin�
z0 =

p
f 2 � x02

� = tan � 1( x
f )

(5)

(a) Sphere (b) Geosphere

Figure 7:3D spherical model types comparison
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4.3. Spherical models

In the case of general rotational motion, the scene is reconstruc-
ted as a sphere centered on the camera center. As in the case of
panoramic motion, the corresponding texture is a mosaic gener-
ated from the different frames of the GOP. In order to provide
models which can be ef�ciently coded, the mesh is of geospher-
ical type, in opposition to classical spherical type. This is jus-
ti�ed by the fact that a sphere is latitude and longitude-based,
whereas as geosphere is constructed from a re�ned regular poly-
hedron (here an icosahedron). As a consequence the verticesof a
geosphere are more homogeneously distributed among the mesh
surface (especially around the poles on the sphere, see �gure 7),
and the amount of information is less important for an equiva-
lent viewing quality. As for the cylindrical models, we compute
the texture coordinates of the mosaic so as the rendering with
the virtual camera is identical to the original frames. A transfor-
mation from cartesian to spherical coordinates is then performed
for the mosaic texture coordinates. The respective horizontal and
vertical transformations are illustrated in �gure 8, where

�
' = tan � 1( y

x )
� = cos� 1( z

f ) (6)
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5. RESULTS

The presented approach has been implemented and tested over
several real and synthetic videos to be validated. We will show
the results obtained over two speci�c sequences. The �rst one,
archi, is a synthetic view of a car parked next to a building,
whose main advantage is to describe all the different cameramo-
tions to be tested (see �gure 11). The second one,bushes, is a
real exterior panoramic view of a stair within a leafy environ-
ment (see �gure 13(a)).
The depth map gives a realistic information on the scene geom-
etry. It enables to reconstruct with good quality the imagesin
the GOP. In �gure 12, we show the �rst key-frame of a 3D GOP,
generated from thearchi sequence, and its associated depth map,
computed frem the �rst and last key-frames of the GOP. A ren-

dering of the model from a virtual viewpoint is also presented. It
shows globally satisfying, with small artifacts, such as elongated
textures in some areas of the model.
In this sequencearchi, the camera describes a general rotational
motion between frames 250 and 400. Our key-frames selection
algorithm detected a spherical GOP for frames 250 to 392 (see
�gure 10). We can also see in �gure 9 the amount of the rota-
tion error residual for each frame. Note that it is computed only
for frames with suf�cient apparent displacement, which explains
thenull value of the residual at each GOP beginning. In �gure
14 we show the corresponding part of the generated geospher-
ical mesh, with its associated mosaic. The difference in �gure
14(c) between the original and reconstructed frames (noticeable
near the principle edges) is mainly due to an anti-aliasing effect
introduced by OpenGL in the reconstructed frame.
In the bushessequence, since the camera is attached to a tri-
pod, it describes an almost pure vertical rotation. As expected,
the key-frame selection algorithm detected only one panoramic
GOP, illustrated by the corresponding mosaic in �gure 13(b)and
the generated 3D panoramic mesh (�gure 13(c)).

6. CONCLUSION AND FUTURE WORK

We proposed here an algorithmic scheme for representing videos
of arbitrary �xed contents by 3D or a 2D model depending on
the camera motion. We thus extended an existing scheme to the
case of general rotations and a robust key-frame selection algo-
rithm was proposed. Moreover, tests made with real and syn-
thetic videos validated the approach. The method could be vali-
dated in several ways. The mesh-based motion estimator should
be adapted so that it computes homographic transformationsbe-
tween the images instead of af�ne ones, so as to produce correct
spherical mosaics. This is related to the fact that the motion
projected onto a sphere is not globally af�ne. We also plan to
investigate an analysis scheme where there will not be a clear
distinction between 3D, panoramic and spherical GOPs, but a
smooth degradation of the 3D models into spherical models in



case of rotational motion.
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en utilisant la sélection de mod�eles,” inJournées Franco-
phones des Jeunes Chercheurs en Vision par Ordinateur -
ORASIS'2003, Grardmer, France, May 2003, pp. 147–156.

[14] P.H.S. Torr, “An assessment of information criteria for mo-
tion model selection,” inProceedings of the 1997 Confer-
ence on Computer Vision and Pattern Recognition (CVPR
'97). 1997, p. 47, IEEE Computer Society.

(a) Key-frame (b) Corresponding depth map

(c) Virtual View

Figure 12:An example of a computed 3D model

[15] E. Morillon, R. Balter, L. Morin, and S. Pateux, “2d/3d
hybrid modeling for video sequence,” inWiamis 2004,In-
ternational Workshop on Image Analysis for Multimedia
Interavtive Services,april 2004, 2004.

[16] G. Marquant, S. Pateux, and C. Labit, “Mesh-based scal-
able image coding with rate-distortion optimization,” in
Image and Video Communications and Processing 2000,
San Jose, USA, 2000, vol. 3974, pp. 101–110.

[17] S. Pateux, “Estimation de mouvement par maillages act-
ifs - application au codage vidéo. rapport technique projet
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Figure 11:Thearchisequence motion decomposition

Frame 238Frame 118Frame 0

(a) Some frames of the sequence

(b) The generated mosaic, covering the entire sequence

(c) Corresponding 3D panoramic mesh

Figure 13:Sequencebushes

(a) Mosaic from a spherical GOP

(b) Corresponding 3D geospherical mesh

reconstructed differenceoriginal

(c) Comparison between original and reconstructed non key-
frame images

Figure 14:An example of a computed spherical GOP model


