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ABSTRACT

3D extraction from video gives a representation adaptedwo |
bitrate coding and provides enhanced functionalities s1scBD
cues for augmented reality and interactive navigation iotgh
realistic environments. But for degenerated motions oferam
like pure rotation, 3D information can not be retrieved. hist
article we propose an original representation based on achyb
2D/3D models stream. The idea of this approach is to provide a
modelling for all sequences including those with rotationke
sequence is divided into portions and for each one the mofion
the camera is identi ed. Depending on the type of motion a 3D
model, a cylindrical mosaic or a spherical mosaic is exé@éct
They are constructed in order to be suitable for an homogeneo
visualization process. Results are shown for syntheticraat
video sequences.

1. INTRODUCTION

1.1. Context

3D model based video coding consists of the representatian o
video with one or several 3D models of the captured scene. By
reprojecting these 3D models one obtains a virtual sequsnee

ilar to the original but with enhanced functionalities sashaug-
mented reality, free view point generation or lighting cges.
Furthermore, 3D model based representations are more compa
than image based-ones.

3D model extraction from images is based on structure-from-
motion and thus requires different view points of the sanemsc

In particular, a camera undergoing a pure rotation doesliost a
the recovery of 3D information as there is no intersection be
tween different lines of view (see Figure 1). Shape from oroti

Figure 1: Camera translation is required for structure-from-
motion: in case of pure rotation, viewlines are superimpbse

In 3D model-based coding, acquisition conditions are not co
strained but assumptions are made on the scene contents: an a
priori known 3D model of the scene contents is available whos
pose, texture (and possibly non rigid deformation) arevested

from the video. This approach is very ef cient for coding e@

with speci ¢ contents such as visiophony [5].

As our goal is to propose a 3D representation for any video se-
guence, we thus do not want to make assumptions on camera pa-
rameters, scene contents or video length. In this contelica
proposed a method based on a 3D model stream [6] instead of
aiming at a unique realistic model of the scene. Each model is
valid for a portion of the original sequence called a GOP (pro

of Pictures). These GOPs are delimited with key images tleat a

thus requires that camera motion is assumed not to be a pure rogtomatically chosen. For each GOP a 3D model is automati-

tation. On the other hand mosaics are very well suited taerepr
sent a video obtained with rotational motion. So here weg@sep

an original 2D/3D hybrid method based on both 3D models and
mosaics. The aim is to deal with all types of video representi

a xed scene including those acquired with a camera undeggoi
pure rotational motion.

1.2. Previous work
1.2.1. 3D Modelling

Retrieving 3D information from videos has long been studied
the eld of computer vision [1, 2]. However it usually asswsne
a video sequence speci cally acquired for enabling 3D recon
struction, or it requires a human interaction in the reawresion

or matching steps [3, 4].

cally estimated and inter-GOP coherence is allowed by @nglid
adjustment [7].

1.2.2. Mosaics

Mosaics can be obtained by homographic, cylindrical or gphe
cal projection [8, 9, 10].

Homographic mosaics are well adapted to reconstruct ptaar

nes and can also be used in pure rotational cases. However,
cylindrical and spherical mosaics are better adapted te mmia-
tional cases: they allow large rotations, and avoid theodisin

of pictures that are far from the reference image.



1.2.3. Model selection 2.4. Algorithm steps

Model selection in a general case has been studied by Kanatanwe now describe each step in the proposed algorithm, iftestr
[11, 12] based on a combined residual/complexity criteepn in gure 4.

proach. It has been used for motion model selection in video

sequences by Berger [13] and Torr [14]. Selecting the motion Motion Estimation:The rst step is to estimate the motion eld
model based on the model complexity is not suitable for our ap throughout the GOP, i.e. the displacement vectors for eieth p
proach as we want to favor 3D modelling and use 2D modelling petween the rstand the last frames. This is carried outihaa
only when it fails. We thus use criteria based on residualg on 3 2D deformable mesh [16, 17, 18]. The motion estimation be-

and a selection algorithm favoring 3D modelling. tween two frames$; andl .1 is performed by netting regularly
I+ with a 2D six-valency mesh, and by searching for each node
2. OVERVIEW OF OUR APPROACH of this mesh the motion that minimizes the quadratic errer be

tween a frame and the following, which is motion-compersate
This section presents an overview of our hybrid 2D/3D repre- The motiont of each pixel inside a triangle is given by the bal-
sentation for video, which is based on the scheme proposed byanced sum of the motion of each vertices for this triangle- Mo
Galpin [7] and Morillon [15]. tion throughout a given GOP is nally computed by accumulat-

ing the vector elds of the successive images.
2.1. General principle

Extraction and tracking of interest pointEeature points extrac-
Our approach is based on an analysis-synthesis schemee In thtjon is performed in the rst frame using a Harris corner aitoe
analysis step, the video is partitioned irgooups of pictures  [19] on the set of 2D mesh nodes. Interest points trackirigen t
(GOPs) ( gure 2) and for each GOP, a textured 3D model (either deduced from the motion estimation computed earlier.
general, cylindrical, or spherical) is computed. Each nhisds-

sociated with a set of camera positions, one for each videodr  Camera pose estimatiohe camera motion estimation is per-
ted. Atthe receiver, synthesis is performed onthe owtaileb  parameters of the camera to perform such a task, and sirfee sel
the original video sequence ( gure 3): each 3D modelisteedu  cajibration methods are still unstable and computatignex-

apd rendered using the transmitted camera positions, vpngzh pensive, we prefered to use rough values for the intringiampa
vides the reconstructed frames for the current GOP. eters.

2.2. Important notions Parallel mosaic creationSince we still do not know which type
of model will better t the input images, a mosaic is computed
in parallel to motion estimation. Image registration isriat
out thanks to the 2D mesh motion estimator. It will be aban-
Two consecutive GORS: andG: share respectively their  doned later if a classical 3D model is better suited.

last and rst key-frames (see gure 2).

A 3D mesh is associated to each GOP and its texture is Depth map estimationThe depth map is deduced from the dis-
either the rst key-frame in the general case, or a mosaic Parity map (i.e. the motion eld) by classical triangulatiaising

regrouping all the GOP's frames in case of pure rotational €stimated camera parameters.
motion.

The GOPs are delineated at their extremities by two par-
ticular images : thé&ey-frames

3D reconstruction:When the next key-frame is selected the cor-
responding model is built. If a 3D GOP can be constructed, we
apply a regular triangular mesh on the depth map and displace
the nodes to the corresponding depth. Otherwise a 2D mosaic
model is built.

2D GOPs refer to GOPs where camera motion is a pure
rotation. As in this case 3D information can not be re-
trieved, these video parts are modelled as 2D mosaics.
Mosaics are warped onto a cylindrical or spherical 3D
mesh for allowing an homogeneous rendering procedure,

but they essentially are 2D models. ) . o
Y y Final reconstructed sequence visualizatiomhe nal recons-

. tructed sequence can be viewed by a dedicated softwarehwhic
2.3. Hypothesis takes as input data the different models with their textamc
We remind here the main hypothesis on which is based our metho?SSociated camera pose. In addition to viewing some speci ¢
post treatments are available, such as global illuminatiod-
i cation, changes in the camera path for virtual navigatimm
creation of a stereo sequence for immersive visualization.

The scene is supposed to be static, or at least motion-
segmented.

It has been shot by a moving monocular camera.

The camera motion is not constrained. 3. KEY FRAMES AUTOMATIC SELECTION
Neither the intrinsic parameters nor the extrinsic parame-
ters are known. The size of the GOPs is not xed. It is determined by the video

data. We therefore need to select key-frames in the seqtiesice
will delineate those GOPs. Key-frames choice is very inmgoart
No hypothesis is made on the scene contents except thathecause it will determine the viability of the nal reconsttion.

there are no, or only few, specular surfaces. This is done in an fully automatic way, with regard to diffiere

The focal length is xed (no zoom).
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Figure 3: Synthesis step: 3D models, texture images andregmositions are used to reconstruct the original frames.

criteria computed on the basis of the tracked interest pa@inal-
ysis. Moreover we wanted our key-frames selection to t the
following constraints :

3.1.1. Apparent displaceme@

Dy + p represents the average motion of the points between the
current imagel 1+, and the key-framd, that precedes in the

It must provide the GOP type among 3D, panoramic and Sequence, and the criterion testiDg; - , is de ned as:

spherical.

It has to favor 3D type GOPs and use 2D GOPs only if
3D is not possible.

Cd, Dgr+p>Sy

Np p . (1)
kt(Mye 4 p)K
=1

where Dyt +p = Nip

In case of a 3D type GOP, a tri-dimensional reconstruc-

tion must be possible.

with N¢+ p the number of tracked points from the last key-frame
I+ until current imagel+ , ¢ the motion vector of point'

It also has to maximize the GOPs size in order to avoid re- petweenl; and|+ », andSy a threshold on the average pixels

dundancy, and ensure that the reconstruction will be mad
under wide enough baseline conditions.

3.1. Selection criteria

The selection criteria are inspired by the ones de ned byp@al
[18] and Morillon [15] in the case of 3D and panoramic GOPs.
We have adapted the criteria to the spherical case and ctadple
the algorithm to deal with any sequence of 3D, cylindricad an
spherical type of motion. The criteria are estimated forheac
current framé . , and they determine whether or not the current
frame is chosen as the next fratde:1 which ends the GOP.

€motion. Sy has been xed experimentally to 10 pixels. This
criterion ensures that the estimation of a depth map willdoeed
under satisfying baseline length.

3.1.2. Common view el@,

C, supervises the percentage of common points betweand
lt+p, and is expressed as :

Cp ) Nl+p

>S,

)

with Sp the threshold on the remaining points percentage. This
criterion ensures that two key-frames share a suf cientwam
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Figure 4: Algorithmic chain

information to build a valid model of the portion of sequence
they delineate. It has been xed to 70%.

3.1.3. Epipolar residual

Ce is de ned as:

. P i
Ce, (Dit+p+ Dispr) <Se

Nt+p

i=1

®)

where D{;t +p = dz(m{; Fet+ p:mit+ p)
and Ft+ pit = Ftt;t +p

with m; an interest point in the imade expressed in homoge-
neous coordinatesi+ p its correspondent i+ p, Fet + p the
estimated fundamental matrix agd a threshold on the match-
ing precision, that is xed to 0.5 pixels. This criterion peits

in the current GORC; involves rotational residual with respect
to mean image displacement. It thus consider relative itantr
tion of rotational and translational motion in the obseriradge
displacement. Threshol8 is experimentally xed td0:05 pix-
els. It has to be noticed that whéh is true (i.e. a rotational
motion has been detected), then the epipolar criteCigis not
signi cant.

3.2. Selection algorithm

We present here the key-frame selection algorithm usingitie
viously de ned criteria. It is executed for each currentnfig,

and indicates, if a key-frame is selected, whether it daliee a

2D or a 3D GOP. The current analyzed GOP is by default clas-
si ed as unknown and if at timet the 3D scene geometry is
suf ciently well estimated the GOP is then classi ed as orie o
3D type. It can be labelled &D only if there are not enough
tracked points in the sequence and if the epipolar critehias

to check the epipolar residual computed from the fundanmhenta ayer peen true. The end of2D GOP occurs as soon &
matrix and matched points between the last key-frame and thepecomes false. We can see in gure 5 the precise scheme of this

current frame.
re-projected on the following key-frame with a sub-pixeloer

and that the camera motion as well as the fundamental ma&ix a

consistent with the motion eld given by the mesh-based dens
estimation.

3.1.4. Rotational motion C,

The criterionC; allows to detect rotational motion. It is de ned
as:
=

c, ——
"’ Du+p

<S,

The image transform induced by a pure rotation (planar hemog

raphy) which best ts the interest points motion is estindate
The mean residual is computed as:

P, P

i=1

x5)2+(yy  Yh)?

N

(x4

E: = (4)

where(x};yi) and(xb;y5) are the cartesian coordinates of the
interest pointsn} andm}, respectively inthe rst and lastimage

It therefore ensures that the 3D model will be

algorithm.

4. 3D MODEL GENERATION

Once the GOP type is determined the corresponding model is
built. For 2D GOPs, 2D planar models would be suf cient.
However, in order to get an homogeneous processing at the de-
coder, we also want to represent 2D GOPs as textured 3D meshes
and a set of camera positions, allowing to reconstruct tige or
inal frames in the GOP. We build a cylinder in case of vertical
oriented rotations, and a geosphere in case of generaiomtat
Both have a mosaic associated as texture.

4.1. 3D models

In a general motion context, once a key-frame is selecteelrto t
minate a 3D GOP, the corresponding model is built. First, the
disparity map is used in a retro-projection phase to cominge
depth map for each pixel. Note that we want this retro-ptajec

to be perfect on the rstimage of the GOP. Then a uniform mesh



3Dfeasible =false ;

e\
GOPtype =unknown ; S =

Z i

If Cq Then
If Cp Then
If Ce *: Cr Then
3Dfeasible =true ; ContinueGOP;
Else
If 3DfeasibleThen
Finalize3D;
Else ContinueGOP;

Else
If Ce”: C; Then
If GOPtype=2DThen Finalize2D;
ElseFinalize3D; (a) Sphere (b) Geosphere
Else
If 3DfeasibleThen Finalize3D;
If (GOPtype==2D & C, Then Finalize2D;

GOPtype=2D; ContinueGOP; Figure 7:3D spherical model types comparison
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Figure 8:Image mapping on a sphere

4.3. Spherical models
Figure 6:From planar to cylindrical mesh . . )
In the case of general rotational motion, the scene is réaans
ted as a sphere centered on the camera center. As in the case of

is applied on the depth map, and each of his nodes is moved toPanoramic motion, the corresponding texture is a mosaiergep
the corresponding depth. ated from the different frames of the GOP. In order to provide

The use of a uniform mesh instead of an adaptive one is justie M0dels which can be ef ciently coded, the mesh is of geospher
by the fact that in the uniform case we only have to transmatin 1@ type, in opposition to classical spherical type. Tisigus-
prede ned way the depths of each node, whereas in the adaptiv U ed by the fact that a sphere is latitude and longitudeduhs

case we would have to transmit the entire topology of the node Whereas as geosphere is constructed from a re ned regular po
hedron (here an icosahedron). As a consequence the vatiges

geosphere are more homogeneously distributed among the mes
surface (especially around the poles on the sphere, see Qur

In the case of a panoramic motion, the 3D model generated is a@nd the amount of information is less important for an equiva
cylinder centered on the camera optical center, and whaliesra  lent viewing quality. As for the cylindrical models, we conip
is equal to the focal length. The computed panoramic mosaic the texture coordinates of the mosaic so as the renderirty wit
is mapped onto the 3D cylinder in such a way that the repro- the virtual camera is identical to the original frames. Asfor-
jections of the model with the virtual camera will generdie t ~ mation from cartesian to spherical coordinates is theroperd
original frames. This procedure is very simple and can ba see for the mosaic texture coordinates. The respective hotéand
as a transformation from cartesian to cylindrical coortiegsee ~ Vertical transformations are illustrated in gure 8, where
gure 6): 8
< x%°= fsin C=tan M%)
2= T2 x® (5) = cos (Z) ©)
= tan (%)

4.2. Cylindrical model
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L dering of the model from a virtual viewpoint is also presenté

Lo shows globally satisfying, with small artifacts, such amelated

b textures in some areas of the model.

b In this sequencarchi, the camera describes a general rotational
S motion between frames 250 and 400. Our key-frames selection
| |

| |

| |

| |

| |

algorithm detected a spherical GOP for frames 250 to 392 (see
gure 10). We can also see in gure 9 the amount of the rota-
tion error residual for each frame. Note that it is computely o

for frames with suf cient apparent displacement, which lexqus
thenull value of the residual at each GOP beginning. In gure
14 we show the corresponding part of the generated geospher-

50

100

150

2

0

250

3

450

ical mesh, with its associated mosaic. The difference inregu
14(c) between the original and reconstructed frames (ealile

frames

—— real tri-dimentional motion
—— real panoramic motion
—— real spherical motion

near the principle edges) is mainly due to an anti-aliasfferte
introduced by OpenGL in the reconstructed frame.

In the bushessequence, since the camera is attached to a tri-
pod, it describes an almost pure vertical rotation. As etqzbc
the key-frame selection algorithm detected only one panira
GORP, illustrated by the corresponding mosaic in gure 13l

the generated 3D panoramic mesh ( gure 13(c)).

—— estimated 3D GOP
—— estimated panoramic GOI
—— estimated spherical GOP

key-frames

Figure 10:Sequencearchi: Comparison between the estimated
GOPs and the real motion

6. CONCLUSION AND FUTURE WORK
5. RESULTS

We proposed here an algorithmic scheme for representirepsid
The presented approach has been implemented and tested ovef arbitrary xed contents by 3D or a 2D model depending on
several real and synthetic videos to be validated. We wilissh  the camera motion. We thus extended an existing scheme to the
the results obtained over two speci ¢ sequences. The r& on case of general rotations and a robust key-frame seledigon a
archi, is a synthetic view of a car parked next to a building, rithm was proposed. Moreover, tests made with real and syn-
whose main advantage is to describe all the different camera  thetic videos validated the approach. The method could le va
tions to be tested (see gure 11). The second dnsshesis a dated in several ways. The mesh-based motion estimatoldshou
real exterior panoramic view of a stair within a leafy enwiro be adapted so that it computes homographic transformatiens
ment (see gure 13(a)). tween the images instead of af ne ones, so as to produceatorre
The depth map gives a realistic information on the scene geom spherical mosaics. This is related to the fact that the motio
etry. It enables to reconstruct with good quality the imaiges  projected onto a sphere is not globally af ne. We also plan to
the GOP. In gure 12, we show the rst key-frame of a 3D GOP, investigate an analysis scheme where there will not be a clea
generated from tharchi sequence, and its associated depth map, distinction between 3D, panoramic and spherical GOPs, but a
computed frem the rst and last key-frames of the GOP. A ren- smooth degradation of the 3D models into spherical models in



case of rotational motion.
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1:Y translation

2: X translation

3: Z translation

4: Vertical pure rotation

5: Spherical pure rotation

6: General motion (rotation + translation)

Frame 300 Frame 400 Frame 500

Figure 11:Thearchisequence motion decomposition

Frame 0 Frame 118 Frame 238

(a) Some frames of the sequence

(b) The generated mosaic, covering the entire sequence

original reconstructed difference

(c) Comparison between original and reconstructed non key-

(c) Corresponding 3D panoramic mesh )
frame images

Figure 13:Sequencéushes . .
Figure 14:An example of a computed spherical GOP model



