Triple Depth Culling

Jean-Eudes Marvie

Pascal Gautron

Gaél Sourimant

{jean-eudes.marvie, pascal.gautron, gael.sourimant } @technicolor.com
Technicolor Research & Innovation

Figure 1: Triple Depth Culling introduces controllable early depth testing for highly complex scenes with arbitrary shader operations.

Virtual worlds feature increasing geometric and shading complexi-
ties, resulting in a constant need for effective solutions to avoid ren-
dering objects invisible for the viewer. This observation is partic-
ularly true in the context of real-time rendering of highly occluded
environments such as urban areas, landscapes or indoor scenes.
This problem has been intensively researched in the past decades,
resulting in numerous optimizations building upon the well-known
Z-buffer technique. Among them, extensions of graphics hardware
such as early Z-culling [Morein 2000] efficiently avoid shading
most of invisible fragments. However, this technique is not applica-
ble when the fragment shader discards fragments or modifies their
depth value, or if alpha testing is enabled [nVidia 2008].

We introduce Triple Depth culling for fast and controllable per-
pixel visibility at the fragment shading stage using multiple depth
buffers. Based on alternate rendering of object batches, our method
effectively avoids the shading of hidden fragments in a single pass,
hence reducing the overall rendering costs. Our approach pro-
vides an effective control on how culling is performed prior to
shading, regardless of potential discard or alpha testing operations.
Triple Depth culling is also complementary with the existing culling
stages of graphics hardware, making our method easily integrable
as an additional stage of the graphics pipeline.

1 Triple Depth Culling

Our algorithm builds upon the Z-Buffer approach, in which a
fragment is kept or discarded after shading by testing its depth
against the current depth stored in the depth buffer. Early Z-culling
performs this elimination beforehand, but involves restrictions on
shading operations, or requires a depth-only prepass to populate
the depth buffer [nVidia 2008]. Conversely, our method works in
a single pass by introducing a depth culling step between the early
Z-culling and the shading of fragments (Figure 2).

Starting with a roughly depth-sorted list of objects batches, a first
batch is rendered into a classical RGBA buffer Z; and a depth
buffer. For each fragment we store its depth into the alpha chan-
nel of Z; (or an additional render target). Then, upon rendering
of a second batch of objects into Z», each fragment undergoes the
following steps: its depth is first compared to the corresponding al-
pha value in Z;. If the fragment is occluded by the first batch of
objects, its output is simply discarded. Otherwise, the fragment is
shaded and stored. The remainder of the object batches is then ren-
dered using alternatively Z; and Z» as render targets.

Note that as the objects are sorted according to the viewing distance
the batches tend to spread over the entire image space, increasing
the screen coverage of each batch and hence the efficiency of our
method.

An overhead of our method lies in the alternation of render buffers,
which tends to generate pipeline stalls. We amortize the cost by
adjusting the size of the object batches. This size can be adjusted

1I I_,/ 4 /

2

P
Early-Z || | £ 1 n

= 1]
el T — 3| — .% i R
Culling ‘Eg Z 2 Z Culling
Fragment Shader = |]
3 & Z Buffer,

Figure 2: Triple Depth culling is an additional, programmable
depth culling step at the fragment shader stage. While rendering
into Zs, the culling is performed using the partial depth informa-
tion available in Z, (step 1). Z1 and Z> are then swapped, hence
maintaining information in both buffers (step 2).

Rasterizer |

either manually or automatically using a simple convergence based
on the render time of the last frame. While the overhead does not
completely vanish, the savings are significant especially in scenes
containing many objects.

Our technique allows the shader to determine whether the shading
must be carried out, depending on its depth output. The expen-
sive shading is then performed only if the fragment is determined
as visible. Note that this visibility determination is approximate:
as each of the additional depth buffers holds only a part of the ren-
dered fragments, some fragments may be erroneously considered
as visible. While this results in unnecessary computations, this also
ensures the conservativeness of our visibility algorithm and does
not introduce artifacts as the corresponding fragments eventually
get discarded after shading by classical depth testing.

2 Results

Our method has been implemented within fragment shaders on an
nVidia GeForce GTX480. The presented scenes contains 15K and
50K objects with complex shader operations rendered at a resolu-
tion of 1280 x 720. Compared to classical Z-buffering, Triple Depth
culling provides performance increases of 8 to 50% using batches
of 50 objects, while remaining applicable in any context. We be-
lieve further performance could be achieved by implementing our
approach in an additional stage in future graphics hardware for pro-
grammable fragment elimination, potentially taking advantage of
the hierarchical representation of depth buffers.

Scene #1tri | #obj Z Early | Triple Depth
Forest 70M | 50K 90 ms N/A 44.5 ms
Asteroids | 35M | 15K | 215ms | N/A 198 ms

References

MOREIN, S. 2000. ATI Radeon Hyper-Z technology. In ACM
SIGGRAPH/Eurographics workshop on graphics hardware.

NVIDIA. 2008. GPU programming guide version for GeForce 8
and later GPUs.

