DOI: 10.1111/j.1467-8659.2012.03201.x
Pacific Graphics 2012

C. Bregler, P. Sander, and M. Wimmer
(Guest Editors)

Volume 31 (2012), Number 7

GPU Shape Grammars

Jean-Eudes Marvie Cyprien Buron

Pascal Gautron

Patrice Hirtzlin Gaél Sourimant

Technicolor

Figure 1: We introduce a novel approach to GPU-based interactive procedural generation of the constitutive elements of large-
scale environments. This scene comprising 116K buildings and 561K trees is edited, generated and rendered at 7-12fps.

Abstract

GPU Shape Grammars provide a solution for interactive procedural generation, tuning and visualization of
massive environment elements for both video games and production rendering. Our technique generates detailed
models without explicit geometry storage. To this end we reformulate the grammar expansion for generation of
detailed models at the tesselation control and geometry shader stages. Using the geometry generation capabilities
of modern graphics hardware, our technique generated massive, highly detailed models. GPU Shape Grammars
integrate within a scalable framework by introducing automatic generation of levels of detail at reduced cost. We
apply our solution for interactive generation and rendering of scenes containing thousands of buildings and trees.

Categories and Subject Descriptors (according to ACM CCS): F4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems; 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; 1.6.3 [Simulation and
Modeling]: Applications; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD)

1. Introduction

Modeling the massively detailed environments used in cur-
rent video games and films requires intensive artistic in-
put. These complex geometries can sometimes be handled
in real-time, to the extent of the available graphics mem-
ory. However, in movie post-production the creativity is of-
ten restrained by the lack of interactive feedback. The ele-
ments of complex scenes are often modeled independently,
and assembled using rough representations to preserve in-
teractivity. Specific preprocessings and out-of-core schemes
are then required for visualization.

Procedural modeling reduces user interventions by exploit-
ing the repetitive patterns typically present in buildings,

(© 2012 The Author(s)

Computer Graphics Forum (©) 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

cities and organic shapes. Instead of explicitly modeling the
scene elements, the artist selects a procedure describing the
construction rules for a family of objects. Using a collec-
tion of elementary (possibly high definition) shapes provided
by the artist, the geometry of entire families of objects is
generated automatically. However, modifying a single gen-
eration parameter may require a costly regeneration of the
entire object. This issue scales with the size of the envi-
ronments: cities or forests comprise many objects generated
from a small set of construction rules. Modifying a rule then
involves a full generation and storage of all the related mod-
els (Figure 2a), resulting in delays in the design workflow.
Furthermore, the memory occupancy of many fully detailed
objects quickly rises to prohibitive levels.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org

2088 J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars

Rule Rule CPU Textures GPU
Params Set Shaders

a3 Bbiy,

Geometry B ::llﬂﬂ === | Renderer |==

Generation I‘
LS
e |
Terminals T I
Geometry S S

(a) Classical generation pipeline

Rule Rule Expressions GPU
Params Set

Rule

Rule]
Expander

L Compiler
CPU l Tﬁ;’:‘:‘ﬂ
s - Terminal
le— | Renderer axdll M B, Evaluator
ﬁl o bl
& B
Textures XM Lemsaly
Shaders

Geometry

(b) GPU Shape Grammars

Figure 2: GPU Shape Grammars map procedural model-
ing techniques to the requirements of graphics hardware. We
compile the grammars into an efficient structure for fast ex-
pansion of the rules. The expansion generates a lightweight
intermediate representation of the object structures. The ge-
ometry is then generated on the fly without explicit storage.

We take a new approach to real-time procedural modeling
and rendering of complex environment elements, avoiding
explicit geometry storage (Figure 2b). Our method expands
construction rules at run time using hardware geometry gen-
eration. Its easy integration brings the advantages of proce-
dural modeling within the reach of real-time engines.

In Section 3 we introduce GPU Shape Grammars and dis-
cuss a generic pipelined architecture for the generation of
highly detailed models (Sections 4 to 6). We apply our ap-
proach to buildings and vegetation (Section 7) and propose
a full-featured scheme for dynamic generation of seamless
levels of detail for interactive editing and rendering of mas-
sive environments (Sections 8 and 9).

2. Technical Background

This section focuses on previous work most related to our
contributions. A thorough state of the art analysis can typi-
cally be found in [WMWEFO07].

Prusinkiewicz and Lindenmayer [PL90] describe the use of
L-Systems [Lin68] for vegetation modeling. Based on ob-
servations of real plants, the growth of each species is de-
scribed by a grammar. Families of distinct plants can then
be obtained by expanding the grammar using a small set of
parameters describing each individual. Levels of details can
also be generated [LCV03].

Procedural modeling also finds a particular use for ar-
chitectural modeling [WWSRO03, MPB05]. In most ap-
proaches [MWH*06, MGHS11] the high-level structure of
the buildings is modeled using a set of rules and parame-
ters, while artists provide the shapes of the constitutive ele-
ments of the facades. Each facade is then a set of assembled
elements. While effective, the evaluation cost of the gram-
mar rules might prevent interactive editing and rendering of
complex models. Also, the full geometry of the generated
sceneries often has to be stored prior to rendering.

The approach of Lipp ef al. [LWW10] is based on an in-
termediate representation of the grammars after a derivation
step. This representation expresses a generic expansion for
a fixed number of iterations. Then the interpretation stage
traverses it to generate the geometry. While this technique
exhibits parallelism for derivation and interpretation of mul-
tiple L-System grammars, it requires full regeneration when
changing the number of iterations, and storage of the inter-
mediate structure. Conversely, our approach considers un-
constrained numbers of iterations for any object, trading
code optimization for generic solution, while leveraging par-
allelism.

Another approach to avoid the explicit storage of expanded
geometry is to delay the generation until the rendering stage.
Haegler et al. [HWA* 10] and Marvie ef al. [MGHS11] intro-
duce specific grammar representations for fast generation.
For each pixel these techniques lazily perform the grammar
derivation for each visible fagade element. In [HWA*10]
facades are assembled from simple 2D textures represent-
ing the elements, with no conditional and stochastic rule
support. The approach from Marvie et al. [MGHS11] is
based on more general rules and ray tracing of geometry
images [GGHO2] representing facade elements, providing
higher visual quality. These techniques effectively reduce the
generation time and provide interactive performance even
with massive models. However, they are heavily fragment-
bound and do not support component split operations.

3. Procedural Pipeline

Existing techniques are usually based on iterative geome-
try refinements. In counterpart, the efficiency of the graphics
pipeline comes from a highly parallel, stage-based structure
carrying specialized information. We then reformulate gram-
mar expansion for efficient procedural generation on graph-
ics hardware. Based on Chomsky grammars [Cho65], our so-
lution supports both growth and reduction operations and is
usable for most purposes of procedural modeling. As shown
in Figure 2 our approach is composed of a rule compiler, a
rule expander and a terminal evaluator.

Rule Compiler This CPU-based stage extracts a generic
expansion graph from the rules and converts it into a inter-
pretable rule map. The run-time behavior of the rules is ex-
tracted and combined with a generic rule map interpreter,

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars 2089

yielding a grammar-specific GPU expression-instantiated
interpreter. The grammar parameters are packed into a pa-
rameter map for fast access.

Rule Expander Our GPU interpreter traverses the rule map
according to the input parameters. The output of the traversal
is a lightweight set of terminal symbols describing the object
structure.

Terminal Evaluator This stage performs GPU-based ge-
ometry generation based on the terminal set. The evaluator
fetches the geometric description of each terminal and gen-
erates terminal geometry. The geometry is then directly ren-
dered without storage.

4. Rule Compiler

CPU ("Rule Compiler) Sl
| [T Expressions
Expression L, | Rk
. 1 o
| Extraction Ezpander
Rule
!
N RuleGraph L}, -~ =
Generation Rule Map
Rule Parameter | ||
Params LCOmpﬂaﬁOl’l Parameters Map
w

<+ | Renderer | &= | _ g% by, | e

- Eval“ator
l-l‘. M Ehi -
aaus

T o ‘
Textures Terminals
Shaders Geometry

Figure 3: The rule compiler divides the grammar into a rule
map and a set of shader-based expressions, resulting in an
expression-instantiated rule map interpreter.

Any grammar rule can be written in the spirit of [MWH?*06]:

Pred ~» Rule({Expr;(P)} jen){Succ} (1)

where Pred is the rule predecessor, Rule is the name of one
of the supported built-in rules, and Succ is the set of rule
successors. The behavior of the expressions Expr; is driven
by the generation parameters P = {p; };cn. We replace the
rule condition of [MWH?*06] by the specific rule type Cond.

Let us consider a simple recursive growth grammar (Fig-
ure 4). Using this formulation we represent a rule using four
components: a predecessor, a successor set, a rule type and a
set of expressions. All the possible expansions of a grammar
can then be represented by a rule graph linking each prede-
cessor to all its successors through a rule type identifier and
a set of expressions associated to each rule.

We flatten the rule graph into a rule map where the succes-

sors are represented by offsets and the rule type is a simple

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Extrude(10){A,B}
Shape(shapeld)
Cond(recLevel<n){C,0}
Branch{D, E}

Rotate(—7/4){W} El
Rotate(rr/4){W}
= 3 |

1d,] A] B [1d)]1d5] € 10| » | E [1ao] w 1] w]
t Lt |

r

$¢ e

moA®w> g

Figure 4: A simple growth grammar (left), where W is the
axiom. We represent the rules using a rule graph (right), en-
coded into a rule map (bottom).

identifier. The expressions typically involve low-level, GPU-
friendly operations. We extract these expressions from the
grammar and generate an expression library in shader code
for run-time evaluation.

Finally, we instantiate a stack-based generic interpreter for
rule map traversal. The purpose of this interpreter is to eval-
uate the expressions and to apply the current rule to deter-
mine the successor set. The successors are then recursively
processed until all the rules have been expanded into termi-
nal symbols. This interpreter is statically combined with the
grammar-specific expression library. This results in a high
performance expression-instantiated interpreter for the input
grammar, ready for execution in the rule expander (see next
section).

5. On The Fly Rule Expansion

We carry out the geometry generation in two main steps:
the rule expander outputs a set of independent terminals, for
which the terminal evaluator generates the geometric details.

5.1. Rule Expander

The grammar and generation parameters fully describe the
structure of the target object, although not in a directly ren-
derable form. The rule expander makes intensive use of hard-
ware geometry generation to generate a set of simple primi-
tives associated with each terminal symbol (Figure 5).

The operations described in [MWH?*06] operate on elements
of various dimensions from points to volumes, where the
component split operation breaks elements into elements of
smaller dimension. The underlying data-parallel structure of
graphics processors cannot handle such dimension changes
without a significant overhead. In counterpart, this architec-
ture favors repetitive operations performed in parallel on ob-
jects of constant dimension.

This problem is naturally solved by a simple principle: An
object of dimension n can always be decomposed into ele-
ments of lower dimensions [Edm60, Lie94]. As 3D surfacic
objects are composed of OD (vertices), 1D (segments) and

2090

A\
]

T

L]

[]

(b)

—

(a) ©)

CPU Expressions Rule Expande?
Rule Rule = TControl
Params Set s
2 Terminal
i | Tesselator
Rule Kide Map Count
Compiler = ’
IParamae(s Map o l
T Triangle
Renderer | = | b |[*— ETai tal Ind g
::- & valuator ndexing
I’ﬁ-ﬁ Terminal
- Set

| | | Terminal
[dentificatio

Textures Terminals Geometry Shader
GPU Shaders Geometry L

Figure 5: The rule expander uses the tessellation control
shader to expand the grammar according to the input pa-
rameters, generating a list of parameterized terminal sym-
bols. The list size is then passed to the tesselator which gen-
erates the appropriate number of triangles. Finally, the ge-
ometry shader associates each triangle with a terminal and
outputs a lightweight terminal set.

2D (surfaces) atoms, geometric operations can be expressed
as a combination of segments with potential 2D elements.
For example, the extrusion a surface starts with a decomposi-
tion into segments followed by an extrusion of each segment.
A surface split simply requires a decomposition in two sets
of segments. Using this principle we introduce a grammar
expansion method based on 1D atoms.

Expansion Context Each rule expander thread uses a con-
text representing the local frame of the current 1D atom and
a tag indicating whether the atom is part of a surface. Cur-
rent contexts are managed using fixed-size stacks in GPU
memory.

Segment-Based Expansion Starting with a set of input
atoms we initialize an expansion context representing their
local frames. The axiom W of the grammar is then applied,
generating a set of 1D and 2D atoms (Figure 6) and updat-
ing the expansion context. Subsequent rules are then applied
recursively until all paths reach terminal rules. This formula-

(@

J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars

Y/ y/
5 8

(e) ()

(€3]

Figure 6: Exploded view of the expansion of our example grammar. The axiom is applied on a base 1D atom (a), yielding an
extruded face composed of one 2D and four 1D atoms (ie. an expansion element), and a translated 1D atom (b). The expansion
element is replaced by a terminal shape, while the translated 1D atom is split (¢) and rotated (d). Each branch is then extruded
(e) and the new expansion elements are replaced by shapes (f). The assembly of shapes is the final geometry (g).

tion has a direct impact on the rule representation: even when
applied on 1D atoms, a notion of the higher dimensions must
remain. This principle is illustrated by the extrusion rule of
Figure 4. Considering a single input atom (Figure 6a), the
output of this rule is twofold: First, the generated face is de-
scribed by a 2D atom and a set of contour 1D atoms (Fig-
ure 6b), called expansion element. Second, the rule translates
the input 1D atom by the extrusion vector v. More formally,
the extrusion is:

Pred ~ Extrude(v){F_Succ, S_Succ} (2)

where F_Succ and S_Succ are respectively applied to the
generated expansion element and the translated 1D atom or
previously generated expansion element. This formulation is
an implicit component split operation. In Figure 4 no specific
rule is applied to the face: We formalize this by introducing
the concept of a null terminal stopping the expansion.

We introduce a branch rule which replicates the original
atom n times (Figure 6¢) and applies a successor to each

generated atom (Figure 4):
Pred ~» Branch(n) { {Succ; };—1 ,} 3)

The current 1D atom can be rotated using a rotation rule

(Figure 6d), updating the expansion context (Figure 6e):
Pred ~» Rotate(q){Succ} 4)

Finally, the Shape rule associates an expansion element with
its corresponding detailed geometry:

(&)

This rule discards the input atoms, and outputs a 2D surface
which is converted into a terminal geometry in later stages.

Pred ~» Shape(geometry)

Using these principle the example grammar (Figure 4) can
be expanded as shown in Figure 6. Our reformulation is car-
ried out automatically from the input grammar, making this
process entirely transparent to the user.

Implementation on Graphics Hardware We implemented
our technique using hardware tesselation and Shader Model
5.0 (DirectX 11). While Cuda/OpenCL languages could also
be used, the specific tesselation units of the Nvidia GTX 480

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars

processor could not be directly accessed. Our shader-based
implementation then harnesses the computational power of
both the computation cores and tesselation units.

Starting from input 1D atoms, the tessellation control shader
executes our expression-instantiated interpreter. The result-
ing list of terminal symbols and associated parameters are
stored within a simple read/write buffer in graphics memory
(using shader image load store mechanisms). The list size is
then passed to the tessellator which generates an appropriate
number of triangles (up to 8192 on GTX 480).

As the output of the tessellator is a simple triangles soup we
identify triangles using the barycentric coordinates of their
vertices. The corresponding terminal symbols and parame-
ters are then fetched from the previously generated list. The
final output of the geometry shader is a lightweight set of
2D patches representing the placement and parameters of
the terminals. This terminal set can either be streamed to the
next stage for direct geometry generation and rendering, or
cached to avoid per-frame regeneration of static objects.

5.2. Terminal Evaluator

6. Renderer

2091

CPU o
Rule Rule P
Params Set
Rule
Rule Expander J
Compiler .
Barameters Map
Shads Terminals Subdiv
ey Evaluation
=2
Evaluator
,
il 3 B, - -
::ull et [Triangle Triangle
Fetch Indexin;
e :
GPU Geometry Shader|

Figure 7: The terminal shapes are substituted to the terminal
set using tessellation and on the fly geometry evaluation.

The terminal set contains the location and parameters for
the terminal shapes. However, the structure of graphics hard-
ware does not allow a direct substitution of the terminal set
by the corresponding detailed geometry. Instead, we embed
the terminal shapes within GPU buffers.

Each primitive of the terminal structure is then tessellated
into the number of triangles corresponding to the target de-
tailed terminal geometry. The geometry shader then extracts
the corresponding shape from the geometry buffers (Fig-
ure 7). Note that other representation such as texture-guided
subdivision surfaces could also be used.

The generated geometry is finally rendered within the same
render pass, avoiding explicit storage of the detailed model.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

CPU Hromds GPU
Rule Rule =
Params Set —
— - Ruled
Rule T xpander
Compiler = _ o 1
Terminals
Parameters Map Geometry ——— Terminal
Evaluator
Renderer T
Fragment Vertex o
= 3 £
Shading Projection aall 3 By,
=I o kil
Fragment Shader]||_Geomewry Shader].'l“‘::
Tewrures! Shaders .

Figure 8: Our pipeline generates a set of classical meshes
ready for rendering using any existing shading technique.

The output of our procedural generation pipeline is a sim-
ple set of textured triangle meshes (Figure 8). Procedurally
generated objects can therefore be combined to other scene
components within a same render pass, making our method
easily integrable into existing rendering engines. For the pur-
pose of production rendering the output of the terminal eval-
uator can also be stored within GPU buffers and read back
to files for later rendering.

7. Applications
7.1. Architecture

Starting from a set of footprint segments, grammar ex-
pansion generally begins with a small number of growth
operations generating the overall building shapes. Numerous
reduction operations (e.g. split) then divide each facade into
elements such as doors and windows. A simple example of
such grammar is provided below using a syntax following
our formulation based on 1D atoms:

w ~» Extrude(buildingHeight){F, ©}

F ~ Split("y", floorHeight, ~){GF, FLR }
GF ~+ Split("y", floorHeight-0.1, 0.1){G, T"}
G ~ Split("x", doorWidth, ~){TP, GWg}
GWRr ~ Repeat("x", windowWidth){TW}

FLr ~> Repeat("y", floorHeight){FWR }

FWR ~ Repeat("x", windowWidth){TW }

TL ~» Shape(ledge)

TP ~> Shape(door)

™ ~> Shape(window)

where rules F, GE, G and FLRr represent the facade,
ground floor including top ledge, ground floor elements and
the other floors. T, TP and TV are the terminal symbols
of the grammar, linking to the shapes of the ledge, door and
windows.

The split and repeat operations [MWH?*06] can be easily im-
plemented in shader code. The terminal shapes can be arbi-
trarily chosen and encoded into GPU buffers, yielding a wide
range of building appearances (Figure 9).

2092 J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars

Figure 9: Variety of buildings following our sample gram-
mar. Changing the geometry of the terminal symbols allows
for further style variations.

7.2. Vegetation

Compared to architecture, plant evolution induces numerous
recursive growth operations, keeping reductions marginal.
This expansion scheme seamlessly fits within our pipeline,
which supports extrusion and implicit component split.

The tree model” shown in Figure 10 is generated from the
grammar on page 60 of [PL90], adapted to our framework:
Extrude(trnkLen, twistg){TT, Grow }

W ~

Grow ~» Cond(rec < n){ BranchSplit, TB)
BranchSplit ~» Branch(3){ Main, Subl, Sub2}
Main ~> Rotate(g1){ RotBranch }
RotBranch ~+ Extrude(brchLen, twist;){TB, Leaves)
Leaves ~» Branch(2){Leaf, Grow}

Leaf ~» Rotate(qp){ T }

Subl ~> Rotate(gz){ Grow }

Sub2 ~> Rotate(gq){ Grow }

TT ~> Shape(trunkGeom)

TB ~> Shape(branchGeom)

TL ~» CreateQuad(leafVertices)

This grammar follows the principle of Figure 6, including re-
cursive rules simulating the growth of smaller branches from
the trunk. This recursion is represented within the rule graph
and evaluated for any level at run-time by our expression-
instantiated interpreter. Each tree is based on a single input
1D atom along with a parameters map.

8. Scaling Up

We introduce object batching and LOD management for in-
teractive generation and rendering of massive environments.

8.1. Object Batching

Starting with 1D atom contexts and a set of parameters our
pipeline generates a terminal set describing the location and
parameters of each element. We leverage the parallel ar-
chitecture of graphics hardware by grouping the 1D atom
contexts into a single buffer, and packing parameters into
a parameters map. The terminal set for an entire set of ob-
jects with various parameters is then generated using a single

' Terminal geometry and textures

http://xfrog.com/

courtesy of

Figure 10: Starting with an input 1D atom and a small set of
terminal shapes (a), the grammar is expanded into 240 ter-
minal patches (b), on which textures can be mapped to gen-
erate a coarse LOD (c). Those terminals are then replaced
by their corresponding geometry, yielding a fully detailed
model (d,e) generated from end to end in 15.3ms (64.8fps).
Once the terminal set is cached render speed reaches 530fps.

draw call (Figure 11a). The evaluation and rendering of the
terminal shapes is performed by rendering the entire termi-
nal set. Consequently, multiple objects can be generated and
rendered at the same cost as a single object (Figure 11b).

8.2. LOD Generation

Our technique for dynamic generation of levels of detail
(LOD) comes from this observation: starting from a basic
representation, each generation step creates additional de-
tails. Lower LODs can then be obtained by truncating the
generation process. We devise 5 LODs for buildings: LOD 4
is fully detailed, while levels 3 and 2 only require a terminal
set. LOD 0 and 1 only use the base geometry of the objects,
ie the result of the first growth rule (Figure 12).

The higher LODs substitute geometry by image-based im-
postors [JWPOS]. A classical approach consists in generating
an impostor per object. Instead, as procedural models reuse
a limited number of terminal shapes we generate and assem-
ble per-terminal impostors. Those impostors are generated
automatically by GPU evaluation and rendering of terminal
shapes simultaneously from several views. Using this prin-
ciple, LOD3 preserves parallax through view interpolation,
while more distant objects only use the center view (LOD2).
Those LODs use the same terminal set and can be inexpen-
sively chosen and blended for each terminal.

Lower LODs avoid the generation of a terminal set. In-
stead, we generate a simplified extruded set representing the

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars 2093

Terminal Set LOD4 LOD3/2
' ' P
Extruded Set LODI LODO Scaled LODs

Full detail LOD enabled LOD ranges LOD shapes

Figure 13: LODs 2 to 4 use the entire terminal set: full terminal geometry (LOD4) or image-based impostors (LOD3/2). The
LODs of terminals can be heterogeneous within a single facade (right). The coarser levels rely on a simplified terminal set:
LODI applies per-pixel grammar expansion, while farthest objects are simply textured (LODO).

/ - ExpreISiom

Y

G IN Rule -_—
Ad T /\ = Expander | E-
1 — | o]

v < [

4-1 Rule Parameters
Map Map _
D Atom C(m|Ex|sCP U 1D atoms for W Termmal Sets GPL
()
404 Generation time (ms) f
/
30
20
10y / Segment count
50 100 150]
(b)

Figure 11: Input footprints of buildings are divided into
1D atoms and expanded in parallel (a), yielding sublinear
complexities (b). Single-atom trees also benefit from object
batching.

overall shape of the object. To this end, the grammar de-
signer tags the grammar to indicate how to generate the ex-
truded set. However, the presence of terminals remain vis-
ible even from long distances. For LOD1 the grammar is
then lazily expanded for each pixel of the base volume, as
in [MGHSI11]. For each visible terminal the central view of
the terminal impostor is sampled to ensure consistency with
the higher levels. Finally, objects covering very few pixels
are replaced by a base textured volume in LODO (Figure 13).

Discrete LODs usually exhibit “popping” level changes. In
our approach LODs are smoothly blended for seamless tran-
sitions. Between LODO and LOD1 we simply blend the de-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

fault texture with per-pixel grammar expansion. LODs 1 and
2 are visually identical, and hence not prone to popping. The
transition to LOD3 is then performed by blending the views
contained in the impostors.

The last level involves the terminal geometries, potentially
generating protruding features. We avoid popping between
LODs 3 and 4 by progressively flattening (geofading) the
geometry as the screen coverage of the terminal decreases.

9. Results

We apply GPU Shape Grammars to the interactive genera-
tion and tuning of buildings and vegetation. The images and
timings were obtained at a resolution of 1280 x 720 using an
Intel Xeon 3.36GHz CPU and a Nvidia GeForce GTX 480.

The skyscrapers scene (Figure 14), containing 25K terminals
(1.25M polygons), is generated in 21ms. The level of detail
of each terminal depends on the viewing distance, yielding
a rendering speed of 21.2fps with on the fly generation, and
38.4fps by storing the terminal set (1.9MB) within graph-
ics memory. If stored the full scene geometry would take
approximately 115MB. As our method features building-

Rule Rule Expressions
Params Set e N
i Terminal
R Exp.2.3.4 Set
Rule I‘F‘ ’
x & Exp.0,1
Compiler e 2Bt
T e kB
Renderer 0.1 I_Tm’“ Hmbc-hoc
+— | Renderer2,3 ‘!— Term.Ev. 2&3| ===
Renderer 4 == [Term Ev.4 | ¢===m
Textures Terminals
Shaders Geometry GPU

Figure 12: The management of levels of detail is integrated
within our pipeline for interactive generation and visualiza-
tion of large-scale sceneries.

2094 J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars

b Al

Figure 14: Skyscrapers scene, from closeup to distant views. The towers comprise up to 209 floors, generated in 21ms and

rendered at a minimum of 38.4fps using GPU Shape Grammars.

grained parallelization, 4 similar scenes (100K terminals to-
tal) are generated in 26ms.

Our massive city scene comprises 116573 buildings and
561280 trees of 7 different species (Figure 1). The buildings
are generated using two distinct grammars: the business dis-
trict buildings use 28 rules, 3 of which being conditional.
The other buildings are generated using 40 distinct rules, in-
cluding 8 stochastic rules. The buildings generated using this
second grammar use 12 unique terminal shapes. The impos-
tors for each shape are generated at a resolution of 256 x 256,
yielding a total memory footprint of 25MB.

The city is divided into 780 object batches. When LODs 2-
4 are needed the terminal set of the batch is generated and
stored in graphics memory (SMB per batch on average). The
farther cells are rendered using LODs 0-1. The ray-traced
grammars of LOD1 are visually equivalent to LOD2, pro-
viding smooth transitions. The scene is rendered at 7-15fps
with on the fly generation of the terminal sets.

The representation of the detailed geometry for the entire
city would take approximately 2.3TB, exceeding by far the
available graphics memory. Using GPU Shape Grammars
the entire representation for the scene is reduced to an av-
erage of 900MB. Besides real-time navigation, the accom-
panying video shows that the generation parameters of any
arbitrarily complex set of buildings can be edited in place
interactively. This capability finds a particular use for the
production of massive assets for movie post-production. The
detailed geometry can then be read back to generate final im-
ages using a production renderer.

10. Discussion

GPU Shape Grammars open a new way of thinking about
procedural generation by introducing a unified pipeline
avoiding the storage of detailed geometry. We discuss future
challenges: snapping, occlusion and roof generation.

Snapping and Occlusion These operations adapt the
generation of procedural models to their environments

[MWH*06]. Typical example are the alignment of the win-
dow levels (snapping) and the avoidance of openings in oc-
cluded building facades. While those operations are costly in
CPU-based generation schemes, our segment-based formu-
lation for parallel grammar expansion forbids the application
of such techniques within a single render pass. However, the
terminal set can be read back and analyzed in a post-process
to remove occluded terminals and snap terminal locations.

Roof Generation A unified solution for real-time roof gen-
eration of complex buildings is highly challenging [KW11].
Moreover, our approach does not preserve the overall roof
footprints, precluding the computation of straight skele-
tons [ADAG95] on the GPU. We thus generate roof struc-
tures using this algorithm on CPU, caching the output within
GPU buffers. Future work will consider processing roof
skeletons using GPU Shape Grammars to generate features
such as roofing tiles, chimneys and attic windows.

11. Conclusion

We introduced GPU Shape Grammars, a generic solution
for real-time generation, tuning and rendering of procedu-
ral models. Based on an expression-instantiated rule inter-
preter coupled to parallel segment-based grammar expan-
sion, our approach generates geometry on the fly within
graphics hardware. The generated models are then directly
streamed across the graphics pipeline, avoiding the storage
of the fully detailed models. The generation quality can be
finely tuned using multiple levels of detail automatically de-
duced from the grammar parameters.

We applied GPU Shape Grammars to the real-time genera-
tion, tuning and rendering of massive urban environments.
The fast rendering capabilities of our method find a partic-
ular interest in interactive applications. Also, the ability for
interactive tuning and rendering of arbitrarily massive mod-
els makes the GPU Shape Grammars approach a highly valu-
able tools within the visual effect industry.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, G. Sourimant / GPU Shape Grammars 2095

References

[ADAGY95] AICHHOLZER O., D.ALBERTS, AURENHAMMER F.,
GARTNER B.: A novel type of skeleton for polygons. Journal of
Universal Computer Science 1, 12 (1995), 752-761. 8

[Cho65] CHOMSKY N.: Aspects of the Theory of Syntax. MIT
Press, 1965. 2

[Edm60] EDMONDS J.: A combinatorial representation for poly-
hedral surfaces. American Mathematical Society Notices 7
(1960), 646. 3

[GGHO2] Gu X., GORTLER S. J., HOPPE H.: Geometry images.
In Proceedings of SIGGRAPH (2002), pp. 355-361. 2

[HWA*10] HAEGLER S., WONKA P., ARISONA S. M., GOOL L.
J. V., MULLER P.: Grammar-based encoding of facades. Com-
puter Graphics Forum 29, 4 (2010), 1479-1487. 2

[JWPO5] JESCHKE S., WIMMER M., PURGATHOFER W.:
Image-based representations for accelerated rendering of com-
plex scenes. In EUROGRAPHICS State of the Art Reports
(2005), pp. 1-20. 6

[KW11] KELLY T., WONKA P.: Interactive architectural model-
ing with procedural extrusions. In Proceedings of SIGGRAPH
(2011), vol. 30, pp. 14:1-14:15. 8

[LCV03] LrucH J., CAMAHORT E., VIVO R.: Procedural mul-
tiresolution for plant and tree rendering. In Proceedings of AFRI-
GRAPH (2003), pp. 31-38. 2

[Lie94] LIENHARDT P.: n-dimensional generalized combinato-
rial maps and cellular quasi-manifolds. Intl Journal of Computa-
tional Geometry and Applications 4, 3 (1994), 275-324. 3

[Lin68] LINDENMAYER A.: Mathematical models for cellular in-
teractions in development parts i & ii. filaments with one-sided
inputs. Journal of Theoretical Biology 18, 3 (1968), 280 —299. 2

[LWW10] Lipp M., WONKA P., WIMMER M.: Parallel genera-
tion of multiple 1-systems. Computer and Graphics 34, 5 (2010),
585-593. 2

[MGHS11] MARVIE J., GAUTRON P., HIRTZLIN P., SOURI-
MANT G.: Render-time procedural per-pixel geometry genera-
tion. In Proceedings of Graphics Interface (2011), pp. 167-174.
2,7

[MPBO5] MARVIE J., PERRET J., BOUATOUCH K.: The FL-

system: a functional L-system for procedural geometric model-
ing. The Visual Computer 1, 5 (2005), 329-339. 2

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
GooL L.: Procedural modeling of buildings. In Proceedings of
SIGGRAPH (2006), pp. 614-623. 2,3,5,8

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorith-
mic Beauty of Plants. Springer-Verlag, 1990. 2, 6

[WMWEF07] WONKA P., MULLER P., WATSON B., FULLER A.:
Urban design and procedural modeling. In SIGGRAPH courses
(2007). 2

[WWSRO03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. In Proceedings of SIGGRAPH (2003),
pp. 669-677. 2

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

